A Concept of Approximated Densities for Efficient Nonlinear Estimation

نویسنده

  • Virginie F. Ruiz
چکیده

This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). Themost common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques, the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy principle subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters. The filtering yields recursive equations involving these parameters. The update applies the Bayes theorem. Through simulation on a generic exponential model, the proposed nonlinear filter is implemented and the results prove to be superior to that of the extended Kalman filter and a class of nonlinear filters based on partitioning algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion Estimation through Approximated Densities

Many techniques are currently used for motion estimation. In the block-based approaches the most common procedure applied is the block-matching based on various algorithms. To refine the motion estimates resulting from the full search or any coarse search algorithm, one can find few applications of Kalman filtering, mainly in the intraframe scheme. The Kalman filtering technique applicability f...

متن کامل

Real-time Recursive State Estimation for Nonlinear Discrete Dynamic Systems with Gaussian or non-Gaussian Noise

Many systems in the real world are more accurately described by nonlinear models. Since the original work of Kalman (Kalman, 1960; Kalman & Busy, 1961), which introduces the Kalman filter for linear models, extensive research has been going on state estimation of nonlinear models; but there do not yet exist any optimum estimation approaches for all nonlinear models, except for certain classes o...

متن کامل

Fitting Effective Diffusion Models to Data Associated with a "Glassy" Potential: Estimation, Classical Inference Procedures, and Some Heuristics

A variety of researchers [15, 22, 27, 29, 31, 33] have successfully obtained the parameters of low-dimensional diffusion models using the data that comes out of atomistic simulations. This naturally raises a variety of questions about efficient estimation, goodness-of-fit tests, and confidence interval estimation. The first part of this article uses maximum likelihood estimation (MLE) to obtain...

متن کامل

Nonlinear estimation with Perron-Frobenius operator and Karhunen-Loève expansion

In this paper, a novel methodology for state estimation of stochastic dynamical systems is proposed. In this formulation, finite-term Karhunen-Loève (KL) expansion is used to approximate the process noise, thus resulting in a non-autonomous deterministic approximation (with parametric uncertainty) of the original stochastic nonlinear system. It is proved that the solutions of the approximate dy...

متن کامل

Gaussian sum particle filtering for dynamic state space models

For dynamic systems, sequential Bayesian estimation requires updating of the filtering and predictive densities. For nonlinear and non-Gaussian models, sequential updating is not as straightforward as in the linear Gaussian model. In this paper, densities are approximated as finite mixture models as is done in the Gaussian sum filter. A novel method is presented, whereby sequential updating of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2002  شماره 

صفحات  -

تاریخ انتشار 2002